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Regarding society’s poor track record of environmental protection: 
“The complex reasons for failure center on the hubris of a society that behaves as if it could 
repeal the laws of nature. Plans generated by economists, technologists, engineers, and 
ecologists have too often assumed that lost or damaged components of ecological systems are 
unimportant or can be repaired or replaced.” J. R. Karr, 1996 
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Introduction 
Multimetric indices of biological integrity (MIBIs) are a type of bioassessment that rely on 
empirical knowledge of how a wide range of biological attributes respond to varying degrees of 
human influence (Karr 1993, Karr and Chu 1997). The most useful MIBIs explicitly embrace 
several attributes of the biotic assemblages, including; taxa richness (diversity) and composition, 
indicator taxa (e.g., tolerant and intolerant groups), population dynamics, production, and an 
assessment of processes that include trophic structure, feeding strategies and other functional 
traits (Allen and Polimene 2011; Calow 1987; Cao and Hawkins 2019). The goal of a MIBI is to 
measure and evaluate the consequences of human actions on biological systems (Karr 1993, Karr 
and Chu 1997) however, it should be emphasized that bioassessments, including MIBIs, are not 
science but are the link between scientists and managers, and thus some level of subjectivity (e.g. 
professional judgment and management objectives) is inherent and cannot be completely 
avoided. MIBIs are evaluative precursors to more intensive, stressor specific, monitoring 
programs. They are assessment tools not monitoring tools and should not be used as such, 
although more comprehensive MIBIs such as the one presented in this report can help guide 
managers as to the types and causes of impairment.  
 
Utah Lake 
Utah Lake is an underappreciated, unique, and ecologically important part of Utah’s (and the 
nation’s) natural heritage. It is one of the few freshwater remnants of pluvial Lake Bonneville, 
that likely outsized Lake Michigan in size and volume. Utah Lake has until recently supported 
one of the most diverse and productive molluscan faunas in the western USA with perhaps 
twenty snail, clam, and mussel taxa. These mollusks likely dictated much of Utah Lake’s 
ecosystem function (Richards and Miller 2017; Richards and Miller 2019; Richards 2016, 2018, 
2019). Unfortunately, the majority of these molluscan taxa have been extirpated from the lake 
and their populations have been drastically reduced throughout most of its drainage (Richards 
and Miller 2019; Richards and Miller 2017; Richards 2016,2017, 2018, 2019a). Utah Lake was 
also once home to at least a dozen native fishes, including the Bonneville Cutthroat Trout 
(extirpated), Utah Lake Sculpin (extinct), and June Sucker (endangered) due to in part its ancient 
lineage and isolation from other large bodied freshwater lakes. Most native fishes have been 
extirpated from Utah Lake.  
 
Regrettably, Utah Lake is now a highly regulated and abused reservoir ecosystem that has 
undergone human induced ecological hysteresis and catastrophic shifts and no longer resembles 
its natural self, pre-Mormon settlement. Consequently, Utah Lake is biologically impoverished. 
According to Karr (1996), “if biotic impoverishment is the problem, then protecting the integrity 
of” Utah Lake’s “biological system(s) must be the goal”. 
 
Sections 101(a) of the Clean Water Act (1987) legally mandates USEPA to protect the physical 
chemical, and biological integrity1,2 of our nation’s waters. In addition, the Clean Water Act 

 
1 We adhere to the following definition of biological integrity throughout this document and during all of our 

research endeavors: Biological integrity refers to the capacity to support and maintain a balanced, integrated, 

adaptive biological system having the full range of elements (genes, species, assemblages) and processes (mutation, 

demography, biotic interactions, nutrient and energy dynamics, and metapopulation processes) expected in the 

natural habitat … (Angermeier and Karr, 1994; Frey, 1975; Karr and Dudley, 1981; Karr et al., 1986).  
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necessitates protection and enhancement of shellfisheries3, which many managers fail to realize, 
includes freshwater mollusks (mussels, snails, clams). 
 
Under the provision of the Clean Water Act, the Utah Division of Water Quality (UDWQ) is 
mandated to protect Utah Lake’s three designated biological beneficial uses:  

1. Warm-water fisheries,  
2. other aquatic life (e.g. bird populations), and the  
3. aquatic life they depend on (UDWQ 2019).  

UDWQ is also required to protect for recreational beneficial use of Utah Lake; the main 
impairment is considered toxin-producing cyanoHABs, and for agricultural uses4. 
 
Because Utah Lake: 1) is the last freshwater remnant of pluvial Lake Bonneville, 2) its large size 
(surface area ≈	100,000 acres) in an semi-arid climate, 3) its unique molluscan and fish diversity 
heritage, and 4) no other ‘reference’ water bodies with which to compare; the index of metrics 
(MIBI) and baseline values presented in this report are site specific for Utah Lake. The index 
can, however, be modified for other lentic waters and will be for Farmington Bay of Great Salt 
Lake. 

Metrics 
Primary Metrics 
The Utah Lake MIBI is composed of relatively easy to measure primary metrics specifically 
targeting designated beneficial uses (fisheries, shell fisheries (e.g. mollusks), birds, and the 
aquatic life they depend (e.g. zooplankton, benthic invertebrates) including: 

1. Benthic macroinvertebrate diversity, 
2. Benthic macroinvertebrate secondary production (biomass as a substitute), 
3. Zooplankton diversity, 
4. Zooplankton secondary production (biomass as a substitute), 
5. Mollusk diversity, 
6. Mollusk densities, 
7. Fish condition index. 

 
An easy to measure metric for recreational beneficial use (e.g. swimmable) will be: 

1. Creation of a DNA identification code of toxin producing cyanoHABs and develop metric 
baseline values. 

 
2 The combination of physical, chemical, and biological integrity = ecological integrity (Karr 1996). 
3 The Clean Water Act (1987) states that: “It is the national goal that wherever attainable, an interim goal of water 

quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation 

in and on the water be achieved.” 
4 UDWQ (2019) documents that, “The state classifies waters based on their uses and develops water quality 

standards to protect those uses. Utah’s designated uses include drinking water, recreation, aquatic wildlife, and 

agriculture. Utah Lake is protected for the following designated uses: 

2B: Infrequent primary contact recreation such as boating, wading, or similar uses 

3B: Warm-water species of game fish, including the necessary aquatic organisms in their food chain 

3D: Other aquatic wildlife. 

4: Agricultural uses including irrigation of crops and stock watering” (UDWQ 2019). 
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The MIBI emphasizes the importance of Utah Lake’s unique molluscan fauna, the importance of 
benthic invertebrates, particularly chironomids to its fisheries and birds, and the importance of 
zooplankton to its fisheries. Present values of each metric reported by Utah Lake researchers 
(e.g. Richards and Miller 2017; Richards 2016, 2018, 2019, UDWQ, and others) and/or those 
reported in the literature will be used as baseline values in which to compare future changes.  
 
Secondary Metrics 
There are also several dozen secondary metrics, including functional trait based metrics that are 
increasingly recognized as equally important or superior to taxa based metrics (Allen and 
Polimene 2011; Calow 1987; Dehling and Stouffer 2018; Monteiro and Faria 2018; Hayden et al. 
2019), that will help fine tune and support the primary metrics and allow managers to better 
understand the levels and types of impairments affecting the lake. 
 
A brief summary of secondary metrics includes: 

o Phytoplankton, zooplankton, benthic invertebrate, mollusk, and fish taxa diversity 
indices, e.g. evenness, effective number of taxa, 

o Zooplankton family relative abundances and ratios,  
o Zooplankton, benthic invertebrate, mollusk, and fish functional traits indices: 

Particularly for zooplankton e.g. body size; mesotrophic vs. eutrophic zooplankton taxa 
ratio, taxonomic group changes (Cladocera, copepods, rotifers, etc.). 

The use and validity of all of the primary and secondary metrics included in the MIBI (Table 1) 
are well grounded in the ecological and bioassessment literature (see Unabridged Literature 
Cited and References section). 
 
Baseline Values 
All of the metrics listed in Table 1 (Provo Bay specific as an example) will be populated from 
values based on recent and present conditions. These will be considered baseline scores to 
evaluate changes. Some metrics will increase or decrease depending on changes in water quality. 
No overall score(s) will be derived as is frequently done in other MIBIs. We contend that there is 
no statistical or ecological rational for weighting each metric and then subjectively combining 
them into a final score, therefore, we consider each metric as stand-alone. Each metric will either 
respond separately to different types and levels of impairment or compliment or add support to 
other metrics. Avoiding an overall score will allow researchers and managers the ability to 
observe more subtle changes in conditions and act accordingly.  
 
Less Eutrophic Utah Lake Goal 
Many of the metrics values will directly or indirectly change if and when Utah Lake moves along 
the primary production gradient from the current highly productive ‘hyper eutrophic’ condition 
to a lesser productive hyper eutrophic to eutrophic condition, as is the management goal of 
several agencies, including USEPA and UDWQ. Some metrics may have already exceeded a 
productivity threshold. For example, Utah Lake benthic invertebrate secondary production may 
or may not have exceeded a threshold value due to hyper-eutrophic conditions and could increase 
when primary production (e.g. eutrophication) is lowered. The appropriate value for benthic 
invertebrate secondary production would therefore be its maximum obtainable to protect for the 
designated beneficial uses of warm-water fisheries and bird populations. 
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Spatially and Temporally Derived MIBIs 
We have confirmed that biological components including phytoplankton, zooplankton, benthic 
invertebrates, and fisheries, etc. vary both spatially and temporally in the lake (Richards and 
Miller 2017; Richards 2016, 2018, 2019, unpublished data and observations). MIBI baseline 
scores presented in the Table 1 example will therefore be provided for three locations that are 
mostly ecologically distinct based on others and our research:  

1) Provo Bay,  
2) Goshen Bay, and  
3) Utah Lake proper.   

That is, separate MIBIs will be required for each of the three sections of the lake. 
 
Although marinas including Lindon Marina, Utah Lake State Park Marina, and Lincoln Marina 
experience quite different ecologies and baseline metric values compared to the other two 
locations, they will not have separate MIBIs. It is apparent that marinas function as a type of 
pollutant and should be treated as such.  
 
The example MIBI presented in Table 1 includes metrics that reflect the temporal component of 
Provo Bay’s ecology. Recommended times of year such as annual, seasonal, or monthly metric 
measurement are included in the MIBI. 
 
Focus on Zooplankton Metrics 
Zooplankton are a main focus of this MIBI. Zooplankton are in the pivotal position of 
transferring nutrients throughout aquatic food webs (bottom-up, top-down, trophic cascades) 
(Caroni and Irvine 2010; García-Chicote et al. 2018) and thus play an essential ecological role 
within Utah Lake. Zooplankton have a proportionally high indicator value that cannot be 
encompassed by phytoplankton or fish metrics (Carpenter et al. 1985; Jeppesen et al. 2011; 
García-Chicote et al. 2018; Naselli-Flores and Rossetti, 2010; Barnett and Beisner 2007). In 
addition, the response of zooplankton assemblage structure metrics can be both to specific 
disturbances and chronic changes ((Attayde and Bozelli, 1998; Cairns et al., 1993; García-
Chicote et al. 2018). Subsequently, these ecological roles of zooplankton in Utah Lake are 
explicitly and implicitly captured in the MIBI.  
 
Zooplankton Taxonomy 
There are only about twenty or so zooplankton taxa in Utah Lake (Richards 2019; Marshall 
2019), which makes species level identification relatively easy for trained taxonomists or 
geneticist using DNA barcoding. We consider the Marshall (2019) report to be the definitive 
taxonomic reference for Utah Lake zooplankton until further modified. This reference was used 
to develop baseline zooplankton metric scores presented in the MIBI (Table 1 example for Provo 
Bay).  
 
Fish Assemblage Imbalance 
Utah Lake’s native fish assemblage no longer exists. Thirteen native species occurred in the lake 
upon arrival of Mormon settlers in the mid 1800s. The Bonneville Cutthroat Trout, Bonneville 
Redside Shiner, Mottled Sculpin, Utah Lake Sculpin, Leatherside Chub, Utah Chub, Speckled 
Dace, Longnose Dace, Mountain Whitefish, and Mountain Sucker no longer exist in Utah Lake. 
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The analog Utah Lake fish assemblage is now dominated by introduced species including Carp, 
Largemouth Bass, White Bass, Black Bullhead, Channel Catfish, Walleye, Goldfish, Yellow 
Perch, Blue Gill, and Black Crappie. The fish assemblage in the lake is most certainly out of 
balance.  
 
We have incorporated several metrics that reflect this imbalance directly and several indirectly. It 
is well known that planktivorous fish can alter entire lake food webs primarily by preferentially 
consuming larger bodied zooplankton which in turn preferentially prefer feeding on larger 
phytoplankton including cyanophytes (Sondergaard et al. 2008; Wetzel 2001; Cole and Weihe 
2016; Havens et al. 2015a, 2015b; Gophen 1990; Cooke et al. 2016). All of the fish species 
currently residing in Utah Lake are planktivorous at least during their juvenile stages. Many 
studies have shown that removal or reduction of planktivorous fish populations improves water 
quality including reduction of cyanoHABs leading many researchers and managers to 
recommend biomanipulation as a relatively inexpensive remedy for controlling algal blooms 
compared to attempts at whole drainage nutrient control (Riedel-Lehrke 1997; Cooke 1986; 
Jeppesen et al. 2007; Richards 2019a). We have shown that at least one metric, zooplankton body 
length is reduced in Utah Lake compared to other temperate lakes and that body lengths of 
zooplankton in the lake vary temporally and spatially in a pattern consistent with planktivore 
feeding (Appendix 1). Several of the zooplankton metrics in the example MIBI (Table 1) will 
respond to changes in fish assemblage composition especially if a fisheries biomanipulation 
program is initiated in Utah Lake.      
 
Species Variability as a Function of Ecosystem Stability  
Individual plankton species abundances and assemblage composition variability increases 
disproportionally to other commonly measured environmental variables as ecosystems become 
more and more out -of -balance and unstable (e.g. loss of diversity; increased nutrients; other 
pollution and pollutants; trophic cascades; altered food webs; etc.) (Cottingham et al. 2000; 
Ptacnik et al. 2008; Zohary 2004; Thomas et al. 2018). The well-established population 
dynamics literature shows that widely fluctuating populations are a good indicator of disturbance 
and that at low population levels, extinction risk increases with increased variability (e.g. 
demographic stochasticity, environmental stochasticity) (Melbourne and Hastings 2008; 
Vucetich et al. 2000; Pimm et al. 1988). Many phyto- and zooplankton taxa in Utah Lake occur 
at low abundances that are highly variable (see relevant Richards citations). These taxa are more 
susceptible to extinction and are inherently useful indicators of impaired conditions. Several 
metrics in Table 1 reflect low taxa abundance and variability (e.g. CV metrics reflect the well-
known theoretical predictions that extinction risk increases with an increase in temporal 
coefficient of variation in population size (CV) (Pimm et al. 1998)). 
 
 

 
The development and refinement of this MIBI is designed to be a collaborative 
effort between agencies including UDWR fisheries program, UDWQ, WFWQC, 

and others. 
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The following table, Tables 1 is our proposed MIBI for Provo Bay and functions as a working 
guideline for Wasatch Front Water Quality Council researchers and their contractors who are 
collecting data on Utah Lake.  
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Table 1. Example of proposed multimetric index of biological integrity (MIBI) template for monitoring Utah Lake. Provo Bay MIBI. Justification of metrics used in this MIBI can 
be found in Unabridged Literature Cited and Selected Reference Section. Metric values are in the process of being populated in this MIBI. TBD = To Be Determined. 

Provo Bay Metric 
Baseline 

Value 
Improvement 

Change 
Phytoplankton All Divisions   

Chl A9 
(monthly mean and 90% CI) 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  
Oct 

Nov:  
Dec: 

Decrease 

Total biovolume (cells L-1)  
(monthly mean and 90% CI) 11 

Jan: 326 (91; 561) 
Feb: 2945 (1,989; 3,900) 

March: 7,333 (4,239; 10,427) 
April: 10,988 (6,024; 15,952) 
May: 75,806 (unk.; 179,259) 
June: 93,746 (unk.; 190,318) 

July: 2,289,270 (597,856; 
3,980,684) 

Aug: 606,535 (397,855; 
815,215) 

Sept: 668,899 (407,730; 
930,068) 

Oct/Nov: 423,521 (290,408; 
556,634) 

Decrease 
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Dec: unknown 

Total biovolume CV 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  
Oct 

Nov:  
Dec: 

Decrease 

Toxin level (µg L-1) 12 
(monthly mean and 90% CI) 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  
Oct 

Nov:  
Dec: 

Decrease 

Mean cell size (V) (µm3 cell-1)  
(monthly mean and 90% CI) 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  

Decrease 
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Oct 
Nov:  
Dec: 

Mean cellular C content (pg C cell-1)  
(monthly mean and 90% CI) 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  
Oct 

Nov:  
Dec: 

Increase 

Mean C content/mean cell volume  
(C/V) (pg C µm-3) 

(monthly mean and 90% CI) 

Jan:  
Feb:  

March: 
April:  
May:  
June:  
July:  
Aug:  

Sept:  
Oct 

Nov:  
Dec: 

Increase 

Taxa Based Diversity15   

Richness 
 (seasonal mean and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Increase 

Evenness  
(seasonal mean and 90% CI) 

Winter 
Spring:  

Increase/Decrease17 



 

 13 

Summer: 
Autumn: 

ENT 13  
(seasonal mean and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Increase/Decrease17 

Division Based Biovolume11   

Proportion biovolume Cyanophytes 
(cells L-1) 

(monthly mean and 90% CI) 11 

Jan: 0.00 
Feb: 0.08 (0.00, 0.16) 

March: 0.09 (0.00, 0.18) 
April: 0.09 (0.04, 0.14) 
May: 0.21 (0.00, 0.44) 
June: 0.69 (0.59, 0.79) 
July: 0.87 (0.80, 0.95) 
Aug: 0.54 (0.46, 0.62) 

Sept: 0.68 (0.53, 0.83) 
Oct/Nov: 0.14 (0.05, 0.24) 

Dec: 

Decrease 

Proportion biovolume Chlorophytes 
(cells L-1) 

(monthly mean and 90% CI) 11 

Jan: 0.08 (0.00, 0.017) 
Feb: 0.10 (0.00, 0.24) 

March: 0.11 (0.05, 0.18) 
April: 0.44 (0.33, 0.54) 
May: 0.34 (0.10, 0.58) 
June: 0.22 (0.15, 0.29) 
July: 0.11 (0.04, 0.19) 
Aug: 0.40 (0.32, 0.49) 

Sept: 0.24 (0.13, 0.36) 
Oct/Nov: 0.83 (0.73, 0.94) 

Dec: unknown 

Increase in summer 
months 

Proportion biovolume Bacillariophytes 
(cells L-1) 

(monthly  mean and 90% CI) 11 

Jan: 0.90 (0.82, 0.99) 
Feb: 0.82 (0.66, 0.98) 

March: 0.79 (0.69, 0.89) 
April: 0.45 (0.34, 0.55) 
May: 0.44 (0.18, 0.71) 

Increase 
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June: 0.08 (0.03, 0.13) 
July: 0.01 (0.00, 0.02) 
Aug: 0.05 (0.03, 0.06) 

Sept: 0.08 (0.02, 0.14) 
Oct/Nov: 0.02 (0.01, 0.03) 

Dec: unknown 

Proportion biovolume other Divisions  
(cells L-1) 

(monthly  mean and 90% CI)11 

Jan: 0.01 (0.00, 0.04) 
Feb: 0.00 

March: 0.01 (0.00, 0.01) 
April: 0.03 (0.01, 0.05) 
May: 0.01 (0.01, 0.02) 
June: 0.01 (0.00, 0.01) 
July: 0.01 (0.00, 0.01) 
Aug: 0.01 (0.00, 0.02) 

Sept: 0.00 
Oct/Nov: 0.00 
Dec: unknown 

Increase 

Division Based Diversity   

Proportion Cyanophyte Taxa  
(seasonal mean and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Decrease 

Proportion Chlorophyte Taxa  
(seasonal monthly and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Increase 

Proportion Bacillariophyte Taxa  
(seasonal mean and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Increase 

Proportion other Divisions Taxa  
(seasonal mean and 90% CI) 

Winter 
Spring:  

Summer: 
Autumn: 

Increase 
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Zooplankton    
Assemblage Level Body Size   

Length (mm)  
(seasonal mean and 90% CI)5 

Winter: 0.66 (0.38, 0.95)1 
Spring: 0.68 (0.60, 0.75) 

Summer: 0.77 (0.72, 0.82) 
Autumn: 0.89 (0.72, 1.06) 

Increase 

CV length5 

(seasonal) 

Winter: 0.55 
Spring: 0.30  

Summer: 0.15  
Autumn: 0.18 

Decrease 

Body mass (mg)  
(seasonal mean and 90% CI) 

TBD10 Increase 

Biovolume (mm3)  
(seasonal mean and 90% CI) 

TBD10 Increase 

Assemblage Level Production   

Biomass (mg L-1)  
(seasonal mean and 90% CI) 

Winter:  
Spring:  

Summer:  
Autumn: 

Increase 

Biomass (mg L-1) CV 
(seasonal) 

Winter:  
Spring:  

Summer:  
Autumn: 

Decrease 

Assemblage Level 
Growth/Reproduction 

  

Potential Growth Rate 
(seasonal mean and 90% CI) 

TBD from Literature4  

Reproduction Type/Frequency 
(seasonal mean and 90% CI) 

TBD from Literature4  

Offspring Size/Number 
(seasonal mean and 90% CI) 

TBD from Literature4  

Assemblage Level Consumption   
Clearance Rate TBD from Literature4  
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(seasonal mean and 90% CI) 
Food Size Range 

(seasonal mean and 90% CI) 
TBD from Literature4  

Sloppy Feeding 
(seasonal mean and 90% CI) 

TBD from Literature4  

Assemblage Level Predator 
Avoidance 

 
 

Vertical Migration 
(seasonal mean and 90% CI) 

TBD from Literature4 Decrease 

Escape Response 
(seasonal mean and 90% CI) 

TBD from Literature4  

Transparency 
(seasonal mean and 90% CI) 

TBD from Literature4 Decrease 

Cyclomorphosis/Defense 
(seasonal mean and 90% CI) 

TBD from Literature4 Decrease 

Assemblage Level Waste/Loss   
Egestion Rate (C, N, P) 

(seasonal mean and 90% CI) 
TBD from Literature4  

Fecal Pellet Sedimentation Rate (C, N, P) 
(seasonal mean and 90% CI) 

TBD from Literature4  

Excretion Rate (NH4, PO4) 
(seasonal mean and 90% CI) 

TBD from Literature4  

Assemblage Level Metabolism   
Respiration Rate 

(seasonal mean and 90% CI) 
TBD from Literature4  

Digestion 
(seasonal mean and 90% CI) 

TBD from Literature4  

Assimilation 
(seasonal mean and 90% CI) 

TBD from Literature4  

Diversity2   
Taxa Richness  

(annual) 
6.79 (6.30, 7.29) Increase 

Taxa Evenness  0.59 (0.55, 0.64) Increase/Decrease17 
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(annual) 
ENT  

(annual) 
3.18 (2.95, 3.40) Increase/Decrease17 

Group Relative Abundance   

Proportion Rotifera 
(seasonal) 

Winter: 0.14 (0.05; 0.22) 
Spring: 0.13 (0.09; 0.17) 

Summer: 0.10 (.06; 0.14) 
Autumn: 0.03 (0.00; 0.06) 

 

Proportion Rotifera CV 
(seasonal) 

Winter: 0.99 
Spring: 1.02  

Summer: 1.00  
Autumn: 1.62 

Decrease 

Proportion Cladocera 
(seasonal) 

Winter: 0.27 (0.24; 0.30)  
Spring: 0.33 (0.30; 0.36)  

Summer: 0.35 (0.31; 0.39)  
Autumn:0.34 (0.29; 0.38) 

 

Proportion Cladocera CV 
(seasonal) 

Winter: 0.20  
Spring: 0.33  

Summer: 0.30  
Autumn: 0.30 

Decrease 

Proportion Calanoida 
(seasonal) 

Winter: 0.15 (0.08; 0.22)  
Spring: 0.10 (0.08; 0.13)  

Summer: 0.05 (0.02; 0.07)  
Autumn: 0.12 (0.04; 0.21) 

 

Proportion Calanoida CV 
(seasonal) 

Winter: 0.73  
Spring: 0.91  

Summer: 1.47  
Autumn: 0.84 

Decrease 

Proportion Cyclopoida 
(seasonal) 

Winter: 0.22 (0.16; 0.28)  
Spring: 0.28 (0.23; 0.30)  

Summer: 0.32 (0.25; 0.39)  
Autumn: 0.29 (0.12; 0.45) 

 

Proportion Cyclopoida CV 
(seasonal) 

Winter: 0.42  
Spring: 0.29  Decrease 
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Summer: 0.58  
Autumn: 0.70 

Proportion Harpacticoida 
(seasonal) 

Winter: 0.03 (0.00; 0.06)  
Spring: 0.01 (0.00; 0.01)  

Summer: 0.02 (0.00; 0.03) 
Autumn: 0.05 (0.00; 0.10) 

 

Proportion Harpacticoida CV 
(seasonal) 

Winter: 1.61  
Spring: 4.1  

Summer: 2.15  
Autumn: 1.16 

Decrease 

Proportion Daphnia sp. 
(seasonal) 

Winter: 0.19 (0.13; 0.24) 
Spring: 0.16 (0.14; 0.18)  

Summer: 0.17 (0.14; 0.19)  
Autumn: 0.18 (0.10; 0.26) 

Increase 

Proportion Daphnia sp. CV 
(seasonal) 

Winter: 0.49  
Spring: 0.49  

Summer: 0.43  
Autumn: 0.55  

Decrease 

Zooplankton-phytoplankton 
relationships 

  

Z:P ratio (zooplankton biomass 
to phytoplankton biomass) 
(seasonal mean and 90% CI) 

Winter:  
Spring:   

Summer:  
Autumn: 

Increase 

Non-Molluscan Benthic 
Invertebrates 

Diversity 
  

Taxa Richness 
(seasonal) 

Winter:  
Spring:   

Summer:  
Autumn: 

Increase 

Taxa Evenness 
(seasonal) 

Winter:  
Spring:   

Summer:  
Autumn: 

Increase 
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ENT 
(seasonal) 

Winter:  
Spring:   

Summer:  
Autumn: 

Increase 

Production   

Total biomass (mg dry weight m-2) 
(seasonal) 

Winter: na  
Spring: na  

Summer: 10,546 (  
Autumn. 10,961 ( 

Increase 

Total biomass CV 
(seasonal) 

Winter: na  
Spring: na  

Summer: 0.84  
Autumn: 0.89 

Decrease 

Chironominae biomass  
(mg dry weight m-2) 

(seasonal) 

Winter: na   
Spring: na   

Summer: 3,304 (  
Autumn: 8,827 ( 

Increase 

Chironominae biomass CV 
(seasonal) 

 

Winter: na  
Spring: na  

Summer: 1.23  
Autumn: 1.01 

Decrease 

Tanypodinae biomass (mg dry weight 
m-2) 

(seasonal) 

Winter: na  
Spring: na  

Summer: 6975 (   
Autumn: 1372 ( 

Increase 

Tanypodinae biomass CV 
(seasonal) 

Winter: na  
Spring: na   

Summer: 1.23  
Autumn: 1.03 

Decrease 

Oligochaete biomass (mg dry weight m-

2) 
(seasonal) 

Winter: na   
Spring: na   

Summer: 267 (  
Autumn: 761 ( 

Increase 

Oligochaete biomass CV Winter: na  Decrease 
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 Spring: na  
Summer: 1.28  
Autumn: 0.66 

Corixid biomass (mg dry weight m-2) 
(seasonal) 

Winter: na 
Spring: na  

Summer: na  
Autumn: na  

Increase 

Corixid biomass CV 
(seasonal) 

Winter: na   
Spring: na  

Summer: na  
Autumn: na  

Decrease 

Mollusks Diversity16   

Native gastropod richness  Autumn: 2 Increase 
Invasive gastropod richness  Autumn: 0 Maintain 

Pulmonate richness  Autumn: 2 Increase 
Non-pulmonate richness  Autumn: 0 Increase 
Native bivalve richness  Autumn: 0 Increase 

Invasive bivalve richness  Autumn: 1 Decrease 
Fishes Condition   

Biological Condition Index3 
(seasonal) 

TBD Increase 

Diversity   
Proportion planktivore taxa  

(yearly) 
TBD3 Decrease 

Proportion piscivore taxa  
(yearly) 

TBD3 Increase 

Proportion benthic taxa  
(yearly) 

TBD3 Decrease 

Proportion invasive taxa  
(yearly) 

TBD3 Decrease 

Abundance7   
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Submerged Aquatic 
Vegetation  

Proportion substrate cover  
(yearly) 

TBD Increase 

Diversity7   
Taxa Richness  

(yearly) 
TBD Increase 

1 More data needed to reduce variability estimates 
2 Taxa diversity metrics S, E, and ENT use annual value because there were no significant differences between seasons using 
bootstrapped (N = 500) mean and 90% CIs. 
3 Consultation with UDWR fisheries biologists needed for metric values 
4 Metric values need to be determined from literature and then confirmed with Utah Lake empirical values 
5 Zooplankton body lengths and CV metrics derived from Richards 2019 literature review and need to be confirmed with empirical 
data from future samples. 
6 Further refinements and justification of seasonal body length sub- metrics are in Appendix 1. 
7 Collaborative research needs to be initiated asap to estimate SAV metrics at all three locations 
8 Temperature data to be acquired from UDWQ Utah Lake database 
9 Data to be compiled from WFWQC and UDWQ Utah Lake database 
10 To be determined empirically 
11 Monthly means and 90% CIs based on lake wide values for 2017 only.  Need to compile data from WFWQC and UDWQ and re 
analyzed 
12 A DNA based measure of toxin level detection is suggested 
13 ENT = effective number of taxa = exponentiated Shannon Diversity Index (H) (Jost 2006; Chao et al. 2010) 
15 Phytoplankton taxa diversity metric means and 90% CI values will be derived from UDWQ database from Rushforth Phycology 
and after taxonomic status and synonymies are accounted and adjusted for (see Richards 2018b for taxonomic updates). 
16 Utah Lake mollusk diversity metric values derived from Richards 2017 and unpublished data 
17 Evenness and ENT may either increase or decrease with changes in conditions and need to be evaluated based on baseline values 
(Cao and Hawkins 2019)
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Discussion 
This is a provisional MIBI illustrating metrics specific to Provo Bay but will include Goshen Bay 
and Utah Lake proper metric values (presently being populated). More literature review, data 
compilation, and consultation with fisheries biologist and other Utah Lake researchers will be 
essential to modify, evaluate, and complete it. Once metric values are populated for each 
location, researchers and managers will be able to confidently evaluate changes to the biological 
and ecological condition of Utah Lake as opposed to depending on professional judgment or 
highly simplified indices comprised of only a few easy to measure generalized metrics. Utah 
Lake is a unique body of water in the western USA with a remnant unique native biota that 
deserves our best efforts to assess and then monitor its present state. It is our responsibility to 
maintain and improve Utah Lake’s condition and protect its biological and ecological integrity, 
including its beneficial uses for this and future generations. 
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Introduction 
Body lengths of zooplankton are a widely used metric for evaluating conditions in lakes. 
Zooplankton body lengths typically decrease with increased; temperature, eutrophication, 
DIN:DP ratio, pollutants, fish predation, and interactions between these factors (Havens and 
Hanazato 1993; Havens et al. 2015; Havens and Beaver 2011;Trommer and Stibor 2019; Barnett 
and Beisner 2007; Gliwicz and Lampert 1990; Richman and Dodson 1983; Gillooly and Stanley 
2000; others). Body size is extremely important in algal bloom dynamics because larger sized 
zooplankton are often better at feeding on larger strands of algal particularly cyanobacteria, 
therefore the loss of larger sized zooplankton may result in cyanoHABs (Carpenter and Kitchell 
1988; Caroni 2010; Jeppesen et al. 2011; Attayde and Bozelli 1998 ; Carpenter et al. 1985; 
Jeppeson et al 2000; Jeppesen et al 2003; Lamper et al 1986; Gannon and Stemberger 1978; 
others). Richards (2019a) is developing a multi-metric index of biological integrity to monitor 
water quality in Utah Lake and Farmington Bay using zooplankton body length as an important 
metric. 
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Even though water quality managers are very concerned about cyanoHABs in Utah Lake, there 
have been no estimates of zooplankton body length spatial and temporal patterns in in Utah 
Lake, despite their well-known importance as a metric for monitoring water quality. We have 
remedied this situation by conducting statistical analyses on spatial and temporal patterns of 
zooplankton body lengths in Utah Lake with results presented in this memo and Richards (2019a 
in progress). 
 
Methods 
We used zooplankton data collected from Wasatch Front Water Quality Council and OreoHelix 
Consulting over the last several years as was presented in Richards 2019b. We then determined 
sample weighted zooplankton body lengths based on abundance data and lengths reported in 
Richards (2109b). We then conducted best-fit regression analyses, marginal analyses, and 
predicted mean and 95% CI body lengths for each location and month in Utah Lake. 
 
Results 
Zooplankton body lengths significantly varied spatially and temporally in Utah Lake with a 
relatively small to medium- small mean length = 0.85 mm (std. dev. = 0.19). Overall, body 
lengths were smallest from March through August and mostly significantly smaller than the 
mean (Figure 1). Body lengths were also significantly smaller than average in Provo Bay, Lindon 
Marina, and Utah Lake State Park Marina and significantly larger than average in the mid 
sections of the lake (labeled LP) (Figure 2).  
 
 
 

 
Figure 1. Predicted mean and 95% CIs for zooplankton body lengths from best fit regression models in Utah Lake seasonally. 
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Figure 2. Predicted mean and 95% CIs for zooplankton body lengths from best fit regression models in Utah Lake by location. 

Zooplankton body lengths were relatively uniformly small in Lindon Marina throughout the 
seasons (Figure 3) but significantly smaller than average in Provo Bay in March and April 
(Figure 4) and smaller than average from May to August at Utah Lake State Park Marina ( 
Figure 5). 
 

.65

.75

.85

.95

1.05
Pr

ed
ict

ed
 b

od
y 

le
ng

th
 (m

m
)

GB LB LM LP Out PA PB PM SB SP SS

Zooplankton Body Lengths



 

 43 

 
Figure 3. Predicted mean and 95% CIs for zooplankton body lengths from best fit regression models in Lindon Marina. 

 
Figure 4. Predicted mean and 95% CIs for zooplankton body lengths from best fit regression models in Provo Bay. 
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Figure 5. Predicted mean and 95% CIs for zooplankton body lengths from best fit regression models in Utah Lake State Park 
marina. 

Discussion 
Results presented in this memo show that zooplankton body lengths were relatively small 
compared to other temperate lakes (see References) and are a highly useful metric for monitoring 
water quality in Utah Lake. Body lengths significantly varied spatially and temporally. We 
suggest that other than the typical seasonal progression of zooplankton assemblages, was also 
due to the effects of planktivorous fish predation. Body lengths were typically smallest from 
spring through summer when fish are most actively feeding and when water clarity was often the 
best for visual planktivore feeding. The reason zooplankton body size was smallest in Provo Bay 
compared to most other sites was likely because this bay has the greatest planktivorous fish 
densities in the entire lake. Planktivorous fish prefer larger sized zooplankton.  
 
2019 was a relatively high-water year in Utah Lake that resulted in a highly successful carp 
spawn and subsequently a boom in YOY juvenile carp production (Richards personal 
observation). Planktivorous juvenile carp require substantially more energy/individual body mass 
during growth than do larger adult carp maintaining body mass, thus zooplankton consumption 
rates should be higher in 2019 and subsequent years until the 2019 carp age class reaches 
adulthood than in previous less successful spawn years. Other planktivorous fish in the lake may 
have also produced more YOY than previous years. This phenomenon may alter zooplankton 
biomass and assemblage structure and requires careful monitoring.       
 
Increased body sizes in late summer reported here were possibly due to increased algal bloom 
induced turbidity in mid-summer, which reduced visual ability of planktivores to find larger 
zooplankton, and subsequently allowed larger zooplankton such as Daphnia sp. to be able to 
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consume larger sized phytoplankton, which then was partially responsible for decreased algal 
blooms in late summer/early autumn (Carpenter 1988; Chislock et al. 2019; Richards 2019b). 
Other causal factors for reduced zooplankton body size in Utah Lake are under investigation, 
including relationships between zooplankton body size and phytoplankton traits, pollution 
effects, and temperature effects. Results of these analyses will be directly applicable to the MIBI 
that is being produced by Richards (2019a).  
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